Structure Reports

Online
ISSN 1600-5368

Dong-Hee Kang, Patrick Höss and Thomas Schleid*

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Correspondence e-mail:
hoess@iac.uni-stuttgart.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{As}-\mathrm{O})=0.002 \AA$
R factor $=0.009$
$w R$ factor $=0.023$
Data-to-parameter ratio $=9.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Xenotime-type $\mathrm{Yb}\left[\mathrm{AsO}_{4}\right]$

$\mathrm{Yb}\left[\mathrm{AsO}_{4}\right]$, ytterbium(III) oxoarsenate (V), adopts the xenotime structure type. Single crystals were obtained in an attempt to synthesize a compound with nominal composition $\mathrm{Yb}_{3} \mathrm{OCl}\left[\mathrm{AsO}_{3}\right]_{2}$ by fusing a mixture of $\mathrm{Yb}_{2} \mathrm{O}_{3}, \mathrm{YbCl}_{3}$ and $\mathrm{As}_{2} \mathrm{O}_{3}$ in a 4:1:3 molar ratio at 1123 K , owing to air-intrusion during the reaction. The structure is built up by chains of edgesharing $\left[\mathrm{YbO}_{8}\right]$ trigonal dodecahedra and $\left[\mathrm{AsO}_{4}\right]$ tetrahedra in a primitive rod packing. Yb and As are situated on positions with $\overline{4} m 2$ symmetry, whereas O atoms are located on a mirror plane.

Comment

$\mathrm{Yb}\left[\mathrm{AsO}_{4}\right]$ adopts the xenotime structure and is isotypic with all known rare earth(III) oxoarsenates(V) $M\left[\mathrm{AsO}_{4}\right](M=\mathrm{Sc}$, Sm, Tb-Ho and Lu; Schäfer \& Will, 1971; Lohmüller et al., 1973; Schäfer et al., 1979; Schmidt, et al., 2005; Kang \& Schleid, 2005) and oxophosphates(V) $M^{\prime}\left[\mathrm{PO}_{4}\right]\left(M^{\prime}=\mathrm{Sc}, \mathrm{Y}\right.$ and $\mathrm{Tb}-\mathrm{Lu}$; Milligan et al., 1983; Ni et al., 1995) that crystallize in this structure type.

The structure contains one single ytterbium site where the Yb^{3+} cations are coordinated by eight O atoms forming two interpenetrating tetrahedra, a compressed and an elongated one $[\mathrm{Yb}-\mathrm{O}=2.2584$ (18) and $2.3910(18) \AA$ A . The resulting coordination figure can thus be described as a trigonal dodecahedron (Fig. 1). These $\left[\mathrm{YbO}_{8}\right]$ polyhedra share four edges each. The As^{V} cations are coordinated by four O atoms in the shape of a slightly distorted tetrahedron [As-O = 1.6831 (17) \AA and $\mathrm{O}-\mathrm{As}-\mathrm{O}=98.49(12)^{\circ} \quad(2 \times)$ and $\left.115.23(7)^{\circ}(4 \times)\right]$. The oxoarsenate (V) tetrahedra share trans edges with the elongated and all vertices with the compressed subtetrahedra within the $\left[\mathrm{YbO}_{8}\right]$ trigonal dodecahedra (Fig. 2).

Figure 1
The trigonal-dodecahedral coordination sphere of the Yb^{3+} cation, built by two interpenetrating tetrahedra, an elongated one (red bonds) and a compressed one (blue bonds). Displacement ellipsoids are drawn at the 95% probability level. [Symmetry codes: (i) $y-\frac{3}{4}, x+\frac{3}{4},-z+\frac{1}{4}$; (ii) $-x,-y+\frac{3}{2}, z$; (iii) $-y+\frac{3}{4}, x+\frac{3}{4},-z+\frac{1}{4}$; (iv) $y-\frac{1}{4},-x+\frac{3}{4}, z+\frac{1}{4}$; (v) $-x,-y+1,-z$; (vi) $-y+\frac{1}{4},-x+\frac{3}{4}, z+\frac{1}{4}$; (vii) $x, y+\frac{1}{2},-z$.]

Received 21 October 2005
Accepted 7 November 2005
Online 16 November 2005

Figure 2
Each $\left[\mathrm{YbO}_{8}\right]$ polyhedron is connected to six $\left[\mathrm{AsO}_{4}\right]$ tetrahedra, two edgeand four vertex-attached ones.

Figure 3
The crystal structure of $\mathrm{Yb}\left[\mathrm{AsO}_{4}\right]$, viewed along [001]. The chains of alternating $\left[\mathrm{YbO}_{8}\right]$ trigonal dodecahedra and $\left[\mathrm{AsO}_{4}\right]$ tetrahedra are arranged in a primitive rod packing. For a better view, only the elongated (red bonds) subtetrahedra within the $\left[\mathrm{YbO}_{8}\right]$ trigonal dodecahedra are drawn.

Through their shared edges, the $\left[\mathrm{AsO}_{4}\right]$ and $\left[\mathrm{YbO}_{8}\right]$ units build up chains along [001]. The structure created by the chains of alternating $\left[\mathrm{YbO}_{8}\right]$ polyhedra and $\left[\mathrm{AsO}_{4}\right]$ tetrahedra can be described as a primitve rod packing (Fig. 3). Another way to describe the structure emphasizes a three-dimensional framework arranged by the edge-shared $\left[\mathrm{YbO}_{8}\right]$ polyhedra alone, with the oxoarsenate (V) tetrahedra residing in channels along [111] (Fig. 4).

Experimental

Single crystals of $\mathrm{Yb}\left[\mathrm{AsO}_{4}\right]$ were obtained in attempts to synthesize a compound with nominal composition $\mathrm{Yb}_{3} \mathrm{OCl}\left[\mathrm{AsO}_{3}\right]_{2}$ by fusing a mixture of $\mathrm{Yb}_{2} \mathrm{O}_{3}, \mathrm{YbCl}_{3}$ and $\mathrm{As}_{2} \mathrm{O}_{3}$ in a 4:1:3 molar ratio at 1123 K for 7 d in flame-sealed evacuated silica ampoules. CsCl was used as a

Figure 4
The crystal structure of $\mathrm{Yb}\left[\mathrm{AsO}_{4}\right]$, viewed along [111]. The oxoarsenate (V) units reside in channels of the $\left[\mathrm{YbO}_{8}\right]$-polyhedra framework.
flux to improve the crystal growth. The ampoules were cooled to room temperature over a period of 4 d . Instead of $\mathrm{Yb}_{3} \mathrm{OCl}\left[\mathrm{AsO}_{3}\right]_{2}$, in analogy with $\mathrm{Gd}_{3} \mathrm{OCl}\left[\mathrm{AsO}_{3}\right]_{2}$ (Kang et al., 2005), the product consisted of minor amounts of YbOCl (Brandt \& Diehl, 1974) and the title compound (main product) owing to air-intrusion during the reaction, and therefore further oxidation of the $\mathrm{As}^{\text {III }}$ component to As ${ }^{V}$.

Crystal data

$\mathrm{Yb}\left[\mathrm{AsO}_{4}\right]$
Mo $K \alpha$ radiation
$M_{r}=311.96$
Cell parameters from 1512
Tetragonal, $I 4_{1} /$ amd
$a=6.9712$ (4) \AA
$c=6.2431$ (4) \AA
$V=303.40(3) \AA^{3}$
$Z=4$
$D_{x}=6.830 \mathrm{Mg} \mathrm{m}^{-3}$
reflections
$\theta=4.4-28.3^{\circ}$
$\mu=41.46 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless $0.07 \times 0.06 \times 0.04 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
109 reflections with $I>2 \sigma(I)$
φ and ω scans
Absorption correction: numerical (X-SHAPE; Stoe \& Cie, 1999)
$T_{\text {min }}=0.082, T_{\text {max }}=0.174$
2463 measured reflections
114 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.009$
$w R\left(F^{2}\right)=0.023$
$S=1.06$
114 reflections
12 parameters
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-9 \rightarrow 9$
$k=-9 \rightarrow 9$
$l=-8 \rightarrow 8$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0136 P)^{2}\right. \\
& +0.1746 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=1.13 \mathrm{e}_{\mathrm{A}} \mathrm{~A}^{-3} \\
& \Delta \rho_{\text {min }}=-0.56 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0122 \text { (5) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{Yb}-\mathrm{O}$	$2.2584(18)$	As -O	$1.6831(17)$
$\mathrm{Yb}-\mathrm{O}^{\text {iv }}$	$2.3910(18)$		
$\mathrm{O}^{\text {viii }}-\mathrm{As}-\mathrm{O}$	$115.23(7)$	$\mathrm{O}^{\mathrm{ix}}-\mathrm{As}-\mathrm{O}$	$98.49(12)$
Symmetry codes: (iv) $y-\frac{1}{4},-x+\frac{3}{4}, z+\frac{1}{4} ;\left(\right.$ viii) $y-\frac{1}{4}, x+\frac{1}{4},-z+\frac{3}{4} ;$ (ix) $-x,-y+\frac{1}{2}, z$			

For the present refinement, the centrosymmetric setting for space group $I 4_{1} /$ amd with origin choice 2 was selected. The highest peak in the final difference Fourier map is located $0.79 \AA$ from Yb .

inorganic papers

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.

This work was supported by the state of Baden-Württemberg and the Deutsche Forschungsgemeinschaft (DFG). We thank Dr Ingo Hartenbach for the data collection.

References

Brandenburg, K. (2005). DIAMOND. Version 3.1. Crystal Impact GbR, Bonn, Germany.

Brandt, G. \& Diehl, R. (1974). Mater. Res. Bull. 9, 411-420.
Kang, D.-H., Komm, Th. \& Schleid, Th. (2005). Z. Kristallogr. Suppl. 22, 157.
Kang, D.-H. \& Schleid, Th. (2005). Z. Anorg. Allg. Chem. 631, 1799-1802.
Lohmüller, G., Schmidt, G., Deppisch, B., Gramlich, V. \& Scheringer, C. (1973). Acta Cryst. B29, 141-142.

Milligan, W. O., Mullica, D. F., Beall, G. W. \& Boatner, L. A. (1983). Inorg. Chim. Acta, 70, 133-136.
Ni, Y., Hughes, J. M. \& Mariano, A. N. (1995). Am. Mineral. 80, 21-26.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Schäfer, W. \& Will, G. (1971). J. Phys. C, 4, 3224-3233.
Schäfer, W., Will, G. \& Müller-Vogt, G. (1979). Acta Cryst. B35, 588-592.
Schmidt, M., Müller, U., Gil, R. C., Milke, E. \& Binnewies, M. (2005). Z. Anorg. Allg. Chem. 631, 1154-1162.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1999). X-SHAPE. Version 1.06. Stoe \& Cie, Darmstadt, Germany.

